Publications
Recent publications
Vps60 initiates alternative ESCRT-III filaments
Pfitzner, A. K., Zivkovic, H., Bernat-Silvestre, C., West, M., Peltier, T., Humbert, F., Odorizzi, G., & Roux, A. (2023). Vps60 initiates alternative ESCRT-III filaments. The Journal of cell biology, 222(11), e202206028. https://doi.org/10.1083/jcb.202206028
Endosomal sorting complex required for transport-III (ESCRT-III) participates in essential cellular functions, from cell division to endosome maturation. The remarkable increase of its subunit diversity through evolution may have enabled the acquisition of novel functions. Here, we characterize a novel ESCRT-III copolymer initiated by Vps60. Membrane-bound Vps60 polymers recruit Vps2, Vps24, Did2, and Ist1, as previously shown for Snf7. Snf7- and Vps60-based filaments can coexist on membranes without interacting as their polymerization and recruitment of downstream subunits remain spatially and biochemically separated. In fibroblasts, Vps60/CHMP5 and Snf7/CHMP4 are both recruited during endosomal functions and cytokinesis, but their localization is segregated and their recruitment dynamics are different. Contrary to Snf7/CHMP4, Vps60/CHMP5 is not recruited during nuclear envelope reformation. Taken together, our results show that Vps60 and Snf7 form functionally distinct ESCRT-III polymers, supporting the notion that diversification of ESCRT-III subunits through evolution is linked to the acquisition of new cellular functions.
Integer topological defects organize stresses driving tissue morphogenesis
Guillamat, P., Blanch-Mercader, C., Pernollet, G., Kruse, K., Roux, A. Integer topological defects organize stresses driving tissue morphogenesis. Nat. Mater. 21, 588–597 (2022). https://doi.org/10.1038/s41563-022-01194-5
Tissues acquire function and shape via differentiation and morphogenesis. Both processes are driven by coordinating cellular forces and shapes at the tissue scale, but general principles governing this interplay remain to be discovered. Here we report that self-organization of myoblasts around integer topological defects, namely spirals and asters, suffices to establish complex multicellular architectures. In particular, these arrangements can trigger localized cell differentiation or, alternatively, when differentiation is inhibited, they can drive the growth of swirling protrusions. Both localized differentiation and growth of cellular vortices require specific stress patterns. By analysing the experimental velocity and orientational fields through active gel theory, we show that integer topological defects can generate force gradients that concentrate compressive stresses. We reveal these gradients by assessing spatial changes in nuclear volume and deformations of elastic pillars. We propose integer topological defects as mechanical organizing centres controlling differentiation and morphogenesis.
Epithelial cells adapt to curvature induction via transient active osmotic swelling
Tomba, C.; Luchnikov, V.; Barberi, L.; Blanch-Mercader, C.; Roux, A.
Developmental Cell 2022, 57 (10), 1257-1270.e5. https://doi.org/10.1016/j.devcel.2022.04.017.
Generation of tissue curvature is essential to morphogenesis. However, how cells adapt to changing curvature is still unknown because tools to dynamically control curvature in vitro are lacking. Here, we developed self-rolling substrates to study how flat epithelial cell monolayers adapt to a rapid anisotropic change of curvature. We show that the primary response is an active and transient osmotic swelling of cells. This cell volume increase is not observed on inducible wrinkled substrates, where concave and convex regions alternate each other over short distances; and this finding identifies swelling as a collective response to changes of curvature with a persistent sign over large distances. It is triggered by a drop in membrane tension and actin depolymerization, which is perceived by cells as a hypertonic shock. Osmotic swelling restores tension while actin reorganizes, probably to comply with curvature. Thus, epithelia are unique materials that transiently and actively swell while adapting to large curvature induction.
HydroFlipper membrane tension probes: imaging membrane hydration and mechanical compression simultaneously in living cells
Garcia, J.; Lopez Andarias, J.; Maillard, J. S.; Mercier, V.; Roffay, C.; Roux, A.; Fuerstenberg, A.; Sakai, N.; Matile, S.
Chemical Science 2022, 13 (7), 2086-2093. https://doi.org/10.1039/D1SC05208J.
HydroFlippers are introduced as the first fluorescent membrane tension probes that report simultaneously on membrane compression and hydration. The probe design is centered around a sensing cycle that couples the mechanical planarization of twisted push–pull fluorophores with the dynamic covalent hydration of their exocyclic acceptor. In FLIM images of living cells, tension-induced deplanarization is reported as a decrease in fluorescence lifetime of the dehydrated mechanophore. Membrane hydration is reported as the ratio of the photon counts associated to the hydrated and dehydrated mechanophores in reconvoluted lifetime frequency histograms. Trends for tension-induced decompression and hydration of cellular membranes of interest (MOIs) covering plasma membrane, lysosomes, mitochondria, ER, and Golgi are found not to be the same. Tension-induced changes in mechanical compression are rather independent of the nature of the MOI, while the responsiveness to changes in hydration are highly dependent on the intrinsic order of the MOI. These results confirm the mechanical planarization of push–pull probes in the ground state as most robust mechanism to routinely image membrane tension in living cells, while the availability of simultaneous information on membrane hydration will open new perspectives in mechanobiology.
Pressure and curvature control of the cell cycle in epithelia growing under spherical confinement
Di Meglio, I. F.; Trushko, A.; Guillamat, P.; Blanch-Mercader, C.; Abuhattum, S.; Roux, A.
Cell Reports 2022, 40 (8), 111227. https://doi.org/10.1016/j.celrep.2022.111227.
Morphogenesis requires spatiotemporal regulation of proliferation, both by biochemical and mechanical cues. In epithelia, this regulation is called contact inhibition of proliferation, but disentangling biochemical from mechanical cues remains challenging. Here, we show that epithelia growing under confinement accumulate pressure that inhibits proliferation above a threshold value. During growth, epithelia spontaneously buckle, and cell proliferation is transiently reactivated within the fold. Reactivation of proliferation within folds correlated with the local reactivation of the mechano-sensing YAP/TAZ pathway. At late time points, when the pressure is highest, β-catenin activity increases. The threshold pressure increases when β-catenin is overactivated and decreases when β-catenin is inhibited. Altogether, our results suggest that different mechanical cues resulting from pressure inhibition of proliferation are at play through different mechano-sensing pathways: the β-catenin pathway sustains cell division under high pressure, and the YAP pathway senses local curvature.
all publications
bioRxiv
Topology changes of the regenerating Hydra define actin nematic defects as mechanical organizers of morphogenesis
Yamini Ravichandran, Matthias Vogg, Karsten Kruse, Daniel JG Pearce, Aurélien Roux
bioRxiv 2024.04.07.588499; doi: https://doi.org/10.1101/2024.04.07.588499
Technical insights into fluorescence lifetime microscopy of mechanosensitive Flipper probes
Chloé Roffay, Juan Manuel García-Arcos, Pierrik Chapuis, Javier López-Andarias, Falk Schneider, Adai Colom, Caterina Tomba, Ilaria Di Meglio, Valentin Dunsig, Stefan Matile, Aurélien Roux, Vincent Mercier
bioRxiv 2022.09.28.509885; doi: https://doi.org/10.1101/2022.09.28.509885
2024
Luciano, M., Tomba, C., Roux, A., & Gabriele, S. (2024). How multiscale curvature couples forces to cellular functions. Nature Reviews Physics, 6(4), 246–268. https://doi.org/10.1038/s42254-024-00700-9
Simonin, J. L., Tomba, C., Mercier, V., Bacchetta, M., Idris, T., Badaoui, M., Roux, A., & Chanson, M. (2024). Apical dehydration impairs the cystic fibrosis airway epithelium barrier via a β1-integrin/YAP1 pathway. Life science alliance, 7(4), e202302449. https://doi.org/10.26508/lsa.202302449
Roux, A., & Reinisch, K. (2024). Recent developments in membrane traffic and lipid dynamics. Current opinion in cell biology, 86, 102320. https://doi.org/10.1016/j.ceb.2023.102320
2023
Wang, X., Espadas, J., Wu, Y., Cai, S., Ge, J., Shao, L., Roux, A., & De Camilli, P. (2023). Membrane remodeling properties of the Parkinson's disease protein LRRK2. Proceedings of the National Academy of Sciences of the United States of America, 120(43), e2309698120. https://doi.org/10.1073/pnas.2309698120
Dedenon, M., Dessalles, C. A., Guillamat, P., Roux, A., Kruse, K., & Blanch-Mercader, C. (2023). Density-polarity coupling in confined active polar films: Asters, spirals, and biphasic orientational phases. Physical Review Letters. https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.268301
Pfitzner, A. K., Zivkovic, H., Bernat-Silvestre, C., West, M., Peltier, T., Humbert, F., Odorizzi, G., & Roux, A. (2023). Vps60 initiates alternative ESCRT-III filaments. The Journal of cell biology, 222(11), e202206028. https://doi.org/10.1083/jcb.202206028
Colin, A., Orhant-Prioux, M., Guérin, C., Savinov, M., Cao, W., Vianay, B., Scarfone, I., Roux, A., De La Cruz, E. M., Mogilner, A., Théry, M., & Blanchoin, L. (2023). Friction patterns guide actin network contraction. Proceedings of the National Academy of Sciences of the United States of America, 120(39), e2300416120. https://doi.org/10.1073/pnas.2300416120
Gopaldass, N.; De Leo, M. G.; Courtellemont, T.; Mercier, V.; Bissig, C.; Roux, A.; Mayer, A. Retromer Oligomerization Drives SNX‐BAR Coat Assembly and Membrane Constriction. EMBO journal 2023, 42 (2). https://doi.org/10.15252/embj.2022112287.
Eremchev, M.; Roesel, D.; Poojari, C. S.; Roux, A.; Hub, J. S.; Roke, S. Passive Transport of Ca2+ Ions through Lipid Bilayers Imaged by Widefield Second Harmonic Microscopy. Biophysical journal 2023, 122 (4), 624–631. https://doi.org/10.1016/j.bpj.2023.01.018.
2022
Guillamat, P., Blanch-Mercader, C., Pernollet, G., Kruse, K., Roux, A. Integer topological defects organize stresses driving tissue morphogenesis. Nat. Mater. 21, 588–597 (2022). https://doi.org/10.1038/s41563-022-01194-5
Meadowcroft, B., Palaia, I., Pfitzner, A.-K., Roux, A., Baum, B., & Anđela Šarić. (2022). Mechanochemical Rules for Shape-Shifting Filaments that Remodel Membranes. PHYSICAL REVIEW LETTERS, 129(26). https://doi.org/10.1103/physrevlett.129.268101
Jiang, X., Harker-Kirschneck, L., Vanhille-Campos, C., Pfitzner, A.-K., Lominadze, E., Roux, A., … Anđela Šarić. (2022). Modelling membrane reshaping by staged polymerization of ESCRT-III filaments. PLOS Computational Biology, 18(10), e1010586–e1010586. https://doi.org/10.1371/journal.pcbi.1010586
Tomba, C.; Luchnikov, V.; Barberi, L.; Blanch-Mercader, C.; Roux, A. Epithelial cells adapt to curvature induction via transient active osmotic swelling. Developmental cell 2022, 57 (10), 1257-1270.e5. https://doi.org/10.1016/j.devcel.2022.04.017.
Garcia, J.; Lopez Andarias, J.; Maillard, J. S.; Mercier, V.; Roffay, C.; Roux, A.; Fuerstenberg, A.; Sakai, N.; Matile, S. HydroFlipper membrane tension probes: imaging membrane hydration and mechanical compression simultaneously in living cells. Chemical science 2022, 13 (7), 2086-2093. https://doi.org/10.1039/D1SC05208J.
Di Meglio, I. F.; Trushko, A.; Guillamat, P.; Blanch-Mercader, C.; Abuhattum, S.; Roux, A. Pressure and curvature control of the cell cycle in epithelia growing under spherical confinement. Cell reports 2022, 40 (8), 111227. https://doi.org/10.1016/j.celrep.2022.111227.
Jukic, N.; Perrino, A. P.; Humbert, F. J. -C.; Roux, A.; Scheuring, S. Snf7 spirals sense and alter membrane curvature. Nature communications 2022, 13 (1). https://doi.org/10.1038/s41467-022-29850-z.
Assies, L.; Mercier, V.; Lopez Andarias, J.; Roux, A.; Sakai, N.; Matile, S. The Dynamic Range of Acidity: Tracking Rules for the Unidirectional Penetration of Cellular Compartments. ChemBioChem 2022, 23 (15), e202200192. https://doi.org/10.1002/cbic.202200192.
2021
Tomba, C.; Roux, A. Bending toward differentiation. Developmental Cell 2021, 56 (23), 3176-3177. https://doi.org/10.1016/j.devcel.2021.11.013.
Roux, A. Common principles of surface deformation in biology. Faraday discussions 2021. https://doi.org/10.1039/d1fd00040c.
Assies, L.; Garcia, J.; Piazzolla, F.; Sanchez, S.; Kato, T.; Reymond, L.; Goujon, A.; Colom Diego, A.; Lopez Andarias, J.; Strakova, K.; et al. Flipper Probes for the Community. Chimia 2021, 75 (12), 1004-1011. https://doi.org/10.2533/chimia.2021.1004.
Piazzolla, F.; Mercier, V.; Assies, L.; Sakai, N.; Roux, A.; Matile, S. Fluorescent Membrane Tension Probes for Early Endosomes. Angewandte Chemie: International Edition 2021. https://doi.org/10.1002/anie.202016105.
Blanch Mercader, C.; Guillamat, P.; Roux, A.; Kruse, K. Integer topological defects of cell monolayers: Mechanics and flows. Physical Review. E 2021, 103 (012405). https://doi.org/10.1103/PhysRevE.103.012405.
Mercier, V.; Larios, J.; Molinard, G.; Goujon, A.; Matile, S.; Roux, A.; Gruenberg, J. La formation des vésicules intraluminales de l'endosome est contrôlée par la tension membranaire. Médecine/Sciences 2021, 37 (8-9), 697-700. https://doi.org/10.1051/medsci/2021096.
Gupta, S.; Yano, J.; Mercier, V.; Htwe, H. H.; Shin, H. R.; Rademaker, G.; Cakir, Z.; Ituarte, T.; Wen, K. W.; Kim, G. E.; et al. Lysosomal retargeting of Myoferlin mitigates membrane stress to enable pancreatic cancer growth. Nature cell biology 2021, 23 (3), 232-242. https://doi.org/10.1038/s41556-021-00644-7.
Mahecic, D.; Carlini, L.; Kleele, T.; Colom Diego, A.; Goujon, A.; Matile, S.; Roux, A.; Manley, S. Mitochondrial membrane tension governs fission. Cell Reports 2021, 35 (108947). https://doi.org/10.1016/j.celrep.2021.108947.
Roffay, C.; Molinard, G.; Kim, K.; Urbanska, M.; Andrade, V.; Barbarasa, V.; Nowak, P.; Mercier, V.; Garcia-Calvo, J.; Matile, S.; et al. Passive coupling of membrane tension and cell volume during active response of cells to osmosis. Proceedings of the National Academy of Sciences of the United States of America 2021, 118 (47), e2103228118. https://doi.org/10.1073/pnas.2103228118.
Pfitzner, A. -K.; Moser Von Filseck, J.; Roux, A. Principles of membrane remodeling by dynamic ESCRT-III polymers. Trends in cell biology (Regular ed.) 2021, 31 (10), 856-868. https://doi.org/10.1016/j.tcb.2021.04.005.
Blanch Mercader, C.; Guillamat, P.; Roux, A.; Kruse, K. Quantifying Material Properties of Cell Monolayers by Analyzing Integer Topological Defects. Physical Review Letters 2021, 126 (028101). https://doi.org/10.1103/PhysRevLett.126.028101.
Sistemich, L.; Dimitrov Stanchev, L.; Kutsch, M.; Roux, A.; Pomorski, G. T.; Herrmann, C. Structural requirements for membrane binding of human guanylate-binding protein 1. The FEBS Journal 2021, 288 (13), 4098-4114. https://doi.org/10.1111/febs.15703.
2020
Pfitzner, A. -K.; Mercier, V.; Jiang, X.; Moser Von Filseck, J.; Baum, B.; Šarić, A.; Roux, A. An ESCRT-III Polymerization Sequence Drives Membrane Deformation and Fission. Cell 2020, 182 (5), 1140-1155. https://doi.org/10.1016/j.cell.2020.07.021.
Moser Von Filseck, J.; Barberi, L.; Talledge, N.; Johnson, I. E.; Frost, A.; Lenz, M.; Roux, A. Anisotropic ESCRT-III architecture governs helical membrane tube formation. Nature Communications 2020, 11 (1516). https://doi.org/10.1038/s41467-020-15327-4.
Trushko, A.; Di Meglio, I. F.; Merzouki, F. A.; Blanch Mercader, C.; Abuhattum, S.; Guck, J.; Alessandri, K.; Nassoy, P.; Kruse, K.; Chopard, B.; et al. Buckling of an Epithelium Growing under Spherical Confinement. Developmental Cell 2020, 54 (5), 655-668.e6. https://doi.org/10.1016/j.devcel.2020.07.019.
Galli, V.; Sadhu, K. K.; Masi, D.; Saarbach, J.; Roux, A.; Winssinger, N. Caprin‐1 Promotes Cellular Uptake of Nucleic Acids with Backbone and Sequence Discrimination. Helvetica Chimica Acta 2020, 103 (e1900255), 1-10. https://doi.org/10.1002/hlca.201900255.
Jimenez Rojo, N.; Leonetti, M. D.; Zoni, V.; Colom Diego, A.; Feng, S.; Iyengar, N. R.; Matile, S.; Roux, A.; Vanni, S.; Weissman, J. S.; et al. Conserved Functions of Ether Lipids and Sphingolipids in the Early Secretory Pathway. Current Biology 2020, 30, 3775-3787.e7. https://doi.org/10.1016/j.cub.2020.07.059.
Mercier, V.; Larios, J.; Molinard, G.; Goujon, A.; Matile, S.; Gruenberg, J.; Roux, A. Endosomal membrane tension regulates ESCRT-III-dependent intra-lumenal vesicle formation. Nature Cell Biology 2020, 22 (8), 947-959. https://doi.org/10.1038/s41556-020-0546-4.
Garcia, J.; Maillard, J. S.; Fureraj, I.; Strakova, K.; Colom Diego, A.; Mercier, V.; Roux, A.; Vauthey, E.; Sakai, N.; Fuerstenberg, A.; et al. Fluorescent Membrane Tension Probes for Super-Resolution Microscopy: Combining Mechanosensitive Cascade Switching with Dynamic-Covalent Ketone Chemistry. Journal of the American Chemical Society 2020, 142 (28), 12034-12038. https://doi.org/10.1021/jacs.0c04942.
Oberhauser, L.; Granziera, S.; Colom Diego, A.; Goujon, A.; Lavallard, V.; Matile, S.; Roux, A.; Brun, T.; Maechler, P. Palmitate and oleate modify membrane fluidity and kinase activities of INS-1E β-cells alongside altered metabolism-secretion coupling. Biochimica et Biophysica Acta - Molecular Cell Research 2020, 1867 (2), 118619. https://doi.org/10.1016/j.bbamcr.2019.118619.
2019
Maechler, F.; Allier, C.; Roux, A.; Tomba, C. Curvature-dependent constraints drive remodeling of epithelia. Journal of Cell Science 2019, 132 (4), jcs222372. https://doi.org/10.1242/jcs.222372.
Tomba, C.; Petithory, T.; Pedron, R.; Airoudj, A.; Di Meglio, I. F.; Roux, A.; Luchnikov, V. Laser‐Assisted Strain Engineering of Thin Elastomer Films to Form Variable Wavy Substrates for Cell Culture. Small 2019, 15 (21), 1900162. https://doi.org/10.1002/smll.201900162.
Goujon, A.; Colom Diego, A.; Strakova, K.; Mercier, V.; Mahecic, D.; Manley, S.; Sakai, N.; Roux, A.; Matile, S. Mechanosensitive Fluorescent Probes to Image Membrane Tension in Mitochondria, Endoplasmic Reticulum, and Lysosomes. Journal of the American Chemical Society 2019, 141 (8), 3380-3384. https://doi.org/10.1021/jacs.8b13189.
Faelber, K.; Dietrich, L.; Noel, J. K.; Wollweber, F.; Pfitzner, A. -K.; Mühleip, A.; Sánchez, R.; Kudryashev, M.; Chiaruttini, N.; Lilie, H.; et al. Structure and assembly of the mitochondrial membrane remodelling GTPase Mgm1. Nature 2019, 571 (7765), 429-433. https://doi.org/10.1038/s41586-019-1372-3.
Kadosh, A.; Colom Diego, A.; Yellin, B.; Roux, A.; Shemesh, T. The tilted helix model of dynamin oligomers. Proceedings of the National Academy of Sciences 2019, 116 (26), 12845-12850. https://doi.org/10.1073/pnas.1903769116.
Riggi, M.; Bourgoint, C.; Macchione, M.; Matile, S.; Loewith, R. J.; Roux, A. TORC2 controls endocytosis through plasma membrane tension. The Journal of Cell Biology 2019, 218 (7), 2265-2276. https://doi.org/10.1083/jcb.201901096.
2018
Colom Diego, A.; Derivery, E.; Soleimanpour, S.; Tomba, C.; Dal Molin, M.; Sakai, N.; Gonzalez Gaitan, M.; Matile, S.; Roux, A. A fluorescent membrane tension probe. Nature Chemistry 2018, 10 (11), 1118-1125. https://doi.org/10.1038/s41557-018-0127-3.
Riggi, M.; Niewola-Staszkowska, K.; Chiaruttini, N.; Colom Diego, A.; Kusmider, B.; Mercier, V.; Soleimanpour, S.; Stahl, M.; Matile, S.; Roux, A.; et al. Decrease in plasma membrane tension triggers PtdIns(4,5)P2 phase separation to inactivate TORC2. Nature Cell Biology 2018, 20 (9), 1043-1051. https://doi.org/10.1038/s41556-018-0150-z.
Tanasescu, R.; Mettal, U.; Colom Diego, A.; Roux, A.; Zumbuehl, A. Facile and Rapid Formation of Giant Vesicles from Glass Beads. Polymers 2018, 10, 54. https://doi.org/10.3390/polym10010054.
Melero Carrillo, A.; Chiaruttini, N.; Karashima, T.; Riezman, I.; Funato, K.; Barlowe, C.; Riezman, H.; Roux, A. Lysophospholipids Facilitate COPII Vesicle Formation. Current Biology 2018, 28 (12), 1950-1958.e6. https://doi.org/10.1016/j.cub.2018.04.076.
Kaksonen, M.; Roux, A. Mechanisms of clathrin-mediated endocytosis. Nature Reviews Molecular Cell Biology 2018, 19 (5), 313-326. https://doi.org/10.1038/nrm.2017.132.
Kruse, K.; Chiaruttini, N.; Roux, A. Optical control of cytoplasmic flows. Nature Cell Biology 2018, 20 (3), 227-228. https://doi.org/10.1038/s41556-018-0050-2.
2017
Chiaruttini, N.; Roux, A. Dynamic and elastic shape transitions in curved ESCRT-III filaments. Current Opinion in Cell Biology 2017, 47, 126-135. https://doi.org/10.1016/j.ceb.2017.07.002.
Colom Diego, A.; Redondo-Morata, L.; Chiaruttini, N.; Roux, A.; Scheuring, S. Dynamic remodeling of the dynamin helix during membrane constriction. Proceedings of the National Academy of Sciences 2017, 114 (21), 5449-5454. https://doi.org/10.1073/pnas.1619578114.
Mierzwa, B. E.; Chiaruttini, N.; Redondo-Morata, L.; Moser Von Filseck, J.; König, J.; Larios, J.; Poser, I.; Müller-Reichert, T.; Scheuring, S.; Roux, A.; et al. Dynamic subunit turnover in ESCRT-III assemblies is regulated by Vps4 to mediate membrane remodelling during cytokinesis. Nature Cell Biology 2017, 19 (7), 787-798. https://doi.org/10.1038/ncb3559.
Merzouki, F. A.; Malaspinas, O. P.; Trushko, A.; Roux, A.; Chopard, B. Influence of cell mechanics and proliferation on the buckling of simulated tissues using a vertex model. Natural Computing 2017, 1-9. https://doi.org/10.1007/s11047-017-9629-y.
Gopaldass, N. A.; Fauvet, B.; Lashuel, H.; Roux, A.; Mayer, A. Membrane scission driven by the PROPPIN Atg18. EMBO Journal 2017, 36 (22), 3274-3291. https://doi.org/10.15252/embj.201796859.
Daumke, O.; Roux, A. Mitochondrial Homeostasis: How Do Dimers of Mitofusins Mediate Mitochondrial Fusion? Current Biology 2017, 27 (9), R353-R356. https://doi.org/10.1016/j.cub.2017.03.024.
Shydlovskyi, S.; Zienert, A. Y.; Ince, S.; Dovengerds, C.; Hohendahl, A.; Dargazanli, J. M.; Blum, A.; Günther, S. D.; Kladt, N.; Stürzl, M.; et al. Nucleotide-dependent farnesyl switch orchestrates polymerization and membrane binding of human guanylate-binding protein 1. Proceedings of the National Academy of Sciences 2017, 114 (28), E5559-E5568. https://doi.org/10.1073/pnas.1620959114.
Jukic, N.; Redondo-Morata, L.; Roux, A.; Scheuring, S. Recovery of ESCRT-III Filaments Subjected to Force: An ‘Invasive Mode' HS-AFM Study. Biophysical Journal 2017, 112 (3), 92a. https://doi.org/10.1016/j.bpj.2016.11.540.
Hohendahl, A.; Talledge, N.; Galli, V.; Shen, P. S.; Humbert, F. J. -C.; De Camilli, P.; Frost, A.; Roux, A. Structural inhibition of dynamin-mediated membrane fission by endophilin. eLife 2017, 6 (26856), 1-19. https://doi.org/10.7554/eLife.26856.
Roux, A.; Loewith, R. J. Tensing Up for Lipid Droplet Formation. Developmental Cell 2017, 41 (6), 571-572. https://doi.org/10.1016/j.devcel.2017.06.001.
Zala, D.; Schlattner, U.; Desvignes, T.; Bobe, J.; Roux, A.; Chavrier, P.; Boissan, M. The advantage of channeling nucleotides for very processive functions. F1000Research 2017, 6, 724. https://doi.org/10.12688/f1000research.11561.2.
Verolet, Q.; Dal Molin, M.; Colom Diego, A.; Roux, A.; Guenee, L.; Sakai, N.; Matile, S. Twisted Push-Pull Probes with Turn-On Sulfide Donors. Helvetica chimica acta 2017, 100 (2), e1600328. https://doi.org/10.1002/hlca.201600328.
Galli, V.; Sebastian, R.; Moutel, S.; Ecard, J.; Perez, F.; Roux, A. Uncoupling of dynamin polymerization and GTPase activity revealed by the conformation-specific nanobody dynab. eLife 2017, 6 (e25197). https://doi.org/10.7554/eLife.25197.
2016
Alessandri, K.; Feyeux, M.; Gurchenkov, B.; Delgado, C.; Trushko, A.; Krause, K. -H.; Vignjević, D.; Nassoy, P.; Roux, A. A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC). Lab on a chip 2016, 16 (9), 1593-1604. https://doi.org/10.1039/c6lc00133e.
Soleimanpour, S.; Colom Diego, A.; Derivery, E.; Gonzalez Gaitan, M.; Roux, A.; Sakai, N.; Matile, S. Headgroup engineering in mechanosensitive membrane probes. Chemical communications 2016, 52 (100), 14450-14453. https://doi.org/10.1039/C6CC08771J.
Antonny, B.; Burd, C.; De Camilli, P.; Chen, E.; Daumke, O.; Faelber, K.; Ford, M.; Frolov, V. A.; Frost, A.; Hinshaw, J. E.; et al. Membrane fission by dynamin: what we know and what we need to know. EMBO Journal 2016, 35 (21), 2270-2284. https://doi.org/10.15252/embj.201694613.
Hohendahl, A.; Roux, A.; Galli, V. Structural insights into the centronuclear myopathy-associated functions of BIN1 and dynamin 2. Journal of Structural Biology 2016, 196 (1), 37-47. https://doi.org/10.1016/j.jsb.2016.06.015.
2015
Saleem, M.; Morlot, S.; Hohendahl, A.; Manzi, J.; Lenz, M.; Roux, A. A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats. Nature Communications 2015, 6 (6249), 1041-1045. https://doi.org/10.1038/ncomms7249.
Chuard, N.; Gasparini, G.; Roux, A.; Sakai, N.; Matile, S. Cell-penetrating poly(disulfide)s: the dependence of activity, depolymerization kinetics and intracellular localization on their length. Organic & biomolecular chemistry 2015, 13 (1), 64-67. https://doi.org/10.1039/C4OB02060J.
Dal Molin, M.; Verolet, Q.; Colom Diego, A.; Letrun, R.; Derivery, E.; Gonzalez Gaitan, M.; Vauthey, E.; Roux, A.; Sakai, N.; Matile, S. Fluorescent Flippers for Mechanosensitive Membrane Probes. Journal of the American Chemical Society 2015, 137 (2), 568-571. https://doi.org/10.1021/ja5107018.
Chiaruttini, N.; Redondo-Morata, L.; Colom Diego, A.; Humbert, F. J. -C.; Lenz, M.; Scheuring, S.; Roux, A. Relaxation of Loaded ESCRT-III Spiral Springs Drives Membrane Deformation. Cell 2015, 163 (4), 866-879. https://doi.org/10.1016/j.cell.2015.10.017.
Gonzalez Gaitan, M.; Roux, A. When cell biology meets theory. Journal of Cell Biology 2015, 210 (7), 1041-1045. https://doi.org/10.1083/jcb.201504025.
2014
Daumke, O.; Roux, A.; Haucke, V. BAR Domain Scaffolds in Dynamin-Mediated Membrane Fission. Cell 2014, 156 (5), 882-892. https://doi.org/10.1016/j.cell.2014.02.017.
Picas, L.; Viaud, J.; Schauer, K.; Vanni, S.; Hnia, K.; Fraisier, V.; Roux, A.; Bassereau, P.; Gaits-Iacovoni, F.; Payrastre, B.; et al. BIN1/M-Amphiphysin2 induces clustering of phosphoinositides to recruit its downstream partner dynamin. Nature Communications 2014, 5 (5647). https://doi.org/10.1038/ncomms6647.
Gasparini, G.; Bang, E. K.; Molinard, G.; Tulumello, D. V.; Ward, S. M.; Kelley, S. O.; Roux, A.; Sakai, N.; Matile, S. Cellular Uptake of Substrate-Initiated Cell-Penetrating Poly(disulfide)s. Journal of the American Chemical Society 2014, 136 (16), 6069-6074. https://doi.org/10.1021/ja501581b.
Boissan, M.; Montagnac, G.; Shen, Q.; Griparic, L.; Guitton, J.; Romao, M.; Sauvonnet, N.; Lagache, T.; Lascu, I.; Raposo, G.; et al. Nucleoside diphosphate kinases fuel dynamin superfamily proteins with GTP for membrane remodeling. Science 2014, 344 (6191), 1510-1515. https://doi.org/10.1126/science.1253768.
Roux, A. Reaching a consensus on the mechanism of dynamin? F1000Prime Reports 2014, 6. https://doi.org/10.12703/P6-86.
2013
Koutsopoulos, O. S.; Kretz, C.; Weller, C. M.; Roux, A.; Mojzisova, H.; Böhm, J.; Koch, C.; Toussaint, A.; Heckel, E.; Stemkens, D.; et al. Dynamin 2 homozygous mutation in humans with a lethal congenital syndrome. European Journal of Human Genetics 2013, 21 (6), 637-642. https://doi.org/10.1038/ejhg.2012.226.
Morlot, S.; Roux, A. Mechanics of dynamin-mediated membrane fission. Annual review of biophysics 2013, 42, 629-649. https://doi.org/10.1146/annurev-biophys-050511-102247.
Bang, E. K.; Gasparini, G.; Molinard, G.; Roux, A.; Sakai, N.; Matile, S. Substrate-Initiated Synthesis of Cell-Penetrating Poly(disulfide)s. Journal of the American Chemical Society 2013, 135 (6), 2088-2091. https://doi.org/10.1021/ja311961k.
Roux, A. The physics of membrane tubes: soft templates for studying cellular membranes. Soft Matter 2013, 9 (29), 6726. https://doi.org/10.1039/c3sm50514f.
2012
Alonso, D.; Fin, A.; Umebayashi, M.; Riezman, H.; Roux, A.; Sakai, N.; Matile, S. Amphiphilic dynamic NDI and PDI probes: imaging microdomains in giant unilamellar vesicles. Organic & biomolecular chemistry 2012, 10 (30), 6087-6093. https://doi.org/10.1039/c2ob25119a.
Morlot, S.; Galli, V.; Klein, M.; Chiaruttini, N.; Manzi, J.; Humbert, F. J. -C.; Dinis, L.; Lenz, M.; Cappello, G.; Roux, A. Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction. Cell 2012, 151 (3), 619-629. https://doi.org/10.1016/j.cell.2012.09.017.
Sorre, B.; Callan Jones, A.; Manzi, J.; Goud, B.; Prost, J. M. L.; Bassereau, P.; Roux, A. Nature of curvature coupling of amphiphysin with membranes depends on its bound density. Proceedings of the National Academy of Sciences 2012, 109 (1), 173-178. https://doi.org/10.1073/pnas.1103594108.
Berchtold, D.; Piccolis, M.; Chiaruttini, N.; Riezman, I.; Riezman, H.; Roux, A.; Walther, T. C.; Loewith, R. J. Plasma membrane stress induces relocalization of Slm proteins and activation of TORC2 to promote sphingolipid synthesis. Nature cell biology 2012, 14 (5), 542-7. https://doi.org/10.1038/ncb2480.
2011
Umebayashi, M.; Pineau, L.; Hannich, J. T.; Zumbuehl, A.; Alonso, D.; Matile, S.; Heinis, C.; Turcatti, G.; Loewith, R. J.; Roux, A.; et al. Chemical Biology Approaches to Membrane Homeostasis and Function. Chimia 2011, 65 (11), 849-852. https://doi.org/10.2533/chimia.2011.849.
Shlomovitz, R.; Gov, N. S.; Roux, A. Membrane-mediated interactions and the dynamics of dynamin oligomers on membrane tubes. New Journal of Physics 2011, 13 (6), 065008. https://doi.org/10.1088/1367-2630/13/6/065008.
Chang-Ileto, B.; Frere, S. G.; Chan, R. B.; Voronov, S. V.; Roux, A.; Di Paolo, G. Synaptojanin 1-Mediated PI(4,5)P2 Hydrolysis Is Modulated by Membrane Curvature and Facilitates Membrane Fission. Developmental Cell 2011, 20 (2), 206-218. https://doi.org/10.1016/j.devcel.2010.12.008.
2010
Roux, A.; Plastino, J. Actin takes its hat off to dynamin. EMBO Journal 2010, 29 (21), 3591-3592. https://doi.org/10.1038/emboj.2010.263.
Morlot, S.; Lenz, M.; Prost, J.; Joanny, J. -F.; Roux, A. Deformation of Dynamin Helices Damped by Membrane Friction. Biophysical Journal 2010, 99 (11), 3580-3588. https://doi.org/10.1016/j.bpj.2010.10.015.
Roux, A.; Koster, G.; Lenz, M.; Sorre, B.; Manneville, J. -B.; Nassoy, P.; Bassereau, P. Membrane curvature controls dynamin polymerization. Proceedings of the National Academy of Sciences 2010, 107 (9), 4141-4146. https://doi.org/10.1073/pnas.0913734107.